Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity

Chulhee Yun (chulheey@mit.edu), Suvrit Sra, and Ali Jadbabaie

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology

TL;DR

We prove for 3-layer ReLU fully-connected neural nets that \(\Theta(\sqrt{N}) \) hidden nodes are necessary and sufficient for memorizing arbitrary \(N \) data points. For deeper networks, we prove that \(\Theta(N) \) parameters are sufficient. These results give (almost) tight bounds on memorization capacity.

Introduction

• Overparametrized NNs with SGD memorize even random noise.
• Q: Given a network, can it memorize arbitrary datasets? How large should it be to memorize any \(N \) data points?
• Recent results on fully-connected, residual, convolutional networks require \(N \) hidden nodes to memorize \(N \) data points!

Def. We define (universal) finite sample expressivity of a neural network \(\theta_0(\cdot) \) as its ability to memorize arbitrary dataset \(\{(x_i, y_i)\}_{i=1}^N \subset \mathbb{R}^{d_X} \times \mathbb{R} \) with \(N \) points.

Def. We define memorization capacity as the maximum of \(N \) for which the network has finite sample expressivity, when \(d_y = 1 \).

cf. VC dim: there exists \(\{x_i\}_{i=1}^N \) such that \(\theta_0(\cdot) \) can shatter \(\{y_i\}_{i=1}^N \subset \{-1, 1\}^N \Longrightarrow \) Memorization capacity \(\leq \) VC dim.

Main Results

Problem Settings

• ReLU(-like) fully-connected neural network:
 \[a^l(x) = x, \quad a^l(x) = \sigma(W^l a^{l-1}(x) + b^l), \quad l = 1, \ldots, L, \]
 \[f_\theta(x) = W^{L-1} a^1(x) + b^{L-1}, \]
 \[\sigma(\cdot) = \max\{s, t, s, t\}, \quad s_0 > s_1 \geq 0. \]
• \(d_i \) is the width of the \(l \)-th hidden layer. \(d_0 = d_y, d_{L+1} = d_y \).
• \(W^l \in \mathbb{R}^{d_l \times d_{l-1}}, b^l \in \mathbb{R}^{d_l}, \theta = (W^l, b^l)_{l=1}^{L+1} \)

Theorem 3.1. A 2-hidden-layer ReLU network with hidden layer dimensions \(d_1d_2 \geq 4Nd_y \) can memorize any arbitrary dataset with \(N \) distinct points.

Proposition 3.2. A 3-hidden-layer ReLU network with hidden layer dimensions \(d_1d_2 \geq 4N \) and \(d_3 \geq 4d_y \) can memorize any arbitrary classification dataset with \(N \) distinct points.

Theorem 3.3. For a 1-hidden-layer ReLU network with \(d_1 + 2 < N \) or a 2-hidden-layer ReLU network with \(2d_1 + d_2 + 2 < N \), \exists a dataset \(\{(x_i, y_i)\}_{i=1}^N \) with \(N \) points that the network cannot memorize.

• Depth-width trade-offs in finite sample memorization.
• Tight bounds \(\Theta(d_1) \) and \(\Theta(d_1d_2) \) on memorization capacity for 1- and 2-hidden-layer ReLU nets, resp.

Extension to Deeper Networks

Proposition 3.4 (informal). A \(L \)-hidden-layer ReLU network with \(W \) parameters between hidden layers can memorize arbitrary \(N \) dataset if \(W = \Omega(Nd_y) \).

• Gives a lower bound on mem. capacity: \(\Omega(W) \). Almost tight!
• cf. memorization capacity \(\leq \) VC dim = \(O(WL\log W) \).

Results on ResNets and SGD

Theorem 4.1 (informal). A deep residual network with \(\frac{d_y}{2} + 6d_y \) can memorize any classification dataset with \(N \) points if \(x_i \)'s are in general position.

• Under a different assumption, reduce \(N + d_y \) nodes to \(\frac{d_y}{2} + 6d_y \).
• CIFAR-10 \((N = 50k, d_y = 3072, d_y = 10)\): 50,016 vs 126 nodes
 • Given a dataset \(\{(x_i, y_i)\}_{i=1}^N \) with empirical risk \(\mathcal{R}(\theta) = \Sigma_i \ell(f_\theta(x_i); y_i) \).
 • \(\ell(z; y) \) is strictly convex and three times differentiable in \(z \).
 • \(\forall y, \exists \) a global minimizer \(z \) of \(\ell(z; y) \).
• Def. A point \(\theta^* \) is a memorizing global minimum of \(\mathcal{R} \) if \(\ell(f_\theta(x_i); y_i) = 0 \) for all \(i \).
• We consider without-replacement SGD, i.e., random shuffling.

Theorem 5.1 (informal). If \(\theta^{(0)} \) satisfies \(\|\theta^{(0)} - \theta^*\| \leq \rho \) for some memorizing global minimum and a small constant \(\rho \), SGD starting from \(\theta^{(0)} \) quickly finds a point \(\theta \) that satisfies

\[\mathcal{R}(\theta) - \mathcal{R}(\theta^*) = O(||\theta^{(0)} - \theta^*||), \quad \|\theta - \theta^*\| \leq 2||\theta^{(0)} - \theta^*||. \]