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Introduction & Questions

•Residual nets (ResNets) consist of residual blocks x 7→ x+Φ(x).
•Risks of deep ResNets are known to have more benign landscapes
than fully-connected networks [1], but theory remains elusive.

•Any local minimum of a single-block ResNet x 7→ wT (x+Vφ(x))
has risk value at least as good as linear predictors [2].
Q. Can we extend this result to multi-block ResNets?

•Adding parallel shortcut networks can remove bad local min [3, 4].
•Adding skip-connections from hidden nodes to output removes bad
local valleys [5].

•However, these results consider direct skip-connections to output.
Q. Can we also show that a chain of skip-connections

improves the loss landscape?

•Near-identity regions of linear ResNets have good optimization
landscape and expressive power [6].

•Extension to nonlinear function space is possible [7].
• Initialization at near-identity regions leads to stable training and
good generalization [8].
Q. What are the optimization/generalization properties

of near-identity regions?

Benign Landscape of Deep ResNets

•Given input x ∈ Rdx, consider the following ResNet:
h1(x) = x + V 1φ

1
z(x)

hl(x) = hl−1(x) + V lφ
l
z(U lhl−1(x)), l = 2, . . . , L,

fθ(x) = wThL(x).
•V l ∈ Rdx×nl, U l ∈ Rml×dx, w ∈ Rdx are parameters
•φl

z : Rml → Rnl is any feed-forward network parametrized by z
•θ is the collection of all U l , V l , z , w

•For loss `(p; y) twice differentiable and convex in p, and data
distribution P ,
R(θ) = E(x ,y)∼P[`(fθ(x); y)], Rlin = inft E(x ,y)∼P[`(tTx ; y)].

Theorem. Let θ∗ be any twice-differentiable critical point of
R(·). If

• E(x ,y)∼P[`′′(fθ∗(x); y)hL(x)hL(x)T ] is full rank; and
• col(

[
(U∗2)T · · · (U∗L)T

]
) 6= Rdx,

Then, at least one of the following holds:
R(θ∗) ≤ Rlin, or λmin(∇2R(θ∗)) < 0.

•Under geometric conditions, a critical point of multi-block ResNet
is better than linear predictors or is a strict saddle point.

• If L = 1, any critical point with w∗ 6= 0 satisfies R(θ∗) ≤ Rlin,
recovering [2] in the same setting.

•A chain of multiple skip-connections (as opposed to direct)
can improve the loss landscape.

•1st condition requires representation of hL to cover the full space.
•2nd condition requires row space of U l ’s not to cover the full space,
giving room for improvement. Always satisfied if ∑L

l=2 ml < dx .
•Removal of these condition is left for future work.

Near-identity Regions of ResNets

•Consider a ResNet with residual blocks:
hl(x) = hl−1(x) + φl

z(hl−1(x)), l = 1, . . . , L.
•φl

z is any O(1/L)-Lipschitz function and φl
z(0) = 0.

Theorem (informal). Assume the loss `(p; y) is Lipschitz, convex,
and differentiable in p. For any critical point θ∗ of R(·),

R(θ∗) ≤ Rlin + C .

•Consider a ResNet with residual blocks:
hl(x) = hl−1(x) + V lReLU(U lhl−1(x)), l = 1, . . . , L.

Theorem (informal). Given any dataset S = {xi}n
i=1, define a class

FL = {fθ : Rdx → R | ‖w‖ ≤ 1, ‖V l‖F, ‖U l‖F ≤ 1/
√

L}. Then,
the empirical Radamacher complexity satisfies

R(FL|S) ≤ e2 maxi ‖xi‖√
n .

•Both bounds are independent of depth L, which is difficult to
achieve (e.g., R of fully-connected nets typically grows with L)

Conclusion

•Under geometric conditions, any critical point of the risk function
of a deep ResNet is either 1) better than linear predictors or 2) the
Hessian at the critical point has a strictly negative eigenvalue.

•Near-identity regions of ResNets enjoy size-indep. upper bounds
on the risk value of critical points & Rademacher complexity.
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