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Introduction & Questions

» Residual nets (ResNets) consist of residual blocks x — x+®(x).

« Risks of deep ResNets are known to have more benign landscapes
than fully-connected networks [1], but theory remains elusive.

(b) with skip connections

(a) without skip connections

- Any local minimum of a single-block ResNet x — w ' (x+V¢(x))
has risk value at least as good as linear predictors [2].

Q. Can we extend this result to multi-block ResNets?

« Adding parallel shortcut networks can remove bad local min |3, 4].

« Adding skip-connections from hidden nodes to output removes bad
local valleys [5].

« However, these results consider direct skip-connections to output.

Q. Can we also show that a chain of skip-connections
improves the loss landscape?

« Near-identity regions of linear ResNets have good optimization
landscape and expressive power [6].

« Extension to nonlinear function space is possible [7].

« Initialization at near-identity regions leads to stable training and
good generalization [8].

Q. What are the optimization/generalization properties
of near-identity regions?

Benign Landscape of Deep ResNets

- Given input x € R%, consider the following ResNet:
hi(x) = x + V1¢,(x)
hi(x) = hi-1(x) + Vigy(Uihi1(x)), 1=2,...,L,
fo(x) = w' hy(x).
-V, e R U, € R™% w & R% are parameters
- ¢ : R™ — R™ is any feed-forward network parametrized by z
« O is the collection of all U, V,, z, w

« For loss /(p;y) twice differentiable and convex in p, and data
distribution P,

S)[{(9) — 43(X7y)N73[€(f9(X); )/)], S)f{lin — |Qf {"(X,y)fvp[g(tTX;y)]‘

Theorem. Let 6" be any twice-differentiable critical point of
R(-). If

« B )op[l(fgr(x); y)hi(x)hi(x) "] is full rank; and
(UD7)) # R,

. coI([(UE‘)T x
Then, at least one of the following holds:

R(O7) < Rin, of Amin(V9R(07)) < 0.

« Under geometric conditions, a critical point of multi-block ResNet
is better than linear predictors or is a strict saddle point.

- If L = 1, any critical point with w* # 0 satisfies R(0") < Ry,
recovering [2] in the same setting.

« A chain of multiple skip-connections (as opposed to direct)
can improve the loss landscape.

= 1st condition requires representation of h; to cover the full space.

= 2nd condition requires row space of U,'s not to cover the full space,
giving room for improvement. Always satisfied if =, m; < d,.

= Removal of these condition is left for future work.

Near-identity Regions of ResNets

= Consider a ResNet with residual blocks:

hi(x) = hi-1(x) + ¢p(hia(x)), I =1,..., L.
- ¢! is any O(1/L)-Lipschitz function and ¢’ (0) = 0.

Theorem (informal). Assume the loss /(p; y) is Lipschitz, convex,
and differentiable in p. For any critical point 8™ of 24(-),

R(OF) < Ry, + C.

= Consider a ResNet with residual blocks:

h/(X) — h/_l(X) + V/RELU(U/h/_l(X)), [=1,...,L.

Theorem (informal). Given any dataset S = {x;}"_,, define a class
Fi=A{fo :R* = R | [|w| < 1,[|V/lr, |U/l[r < 1/VL}. Then,
the empirical Radamacher complexity satisfies

62 MaxX; HX,H

/n

« Both bounds are independent of depth L, which is difficult to
achieve (e.g., R of fully-connected nets typically grows with L)

R(FLls) <

Conclusion

« Under geometric conditions, any critical point of the risk function
of a deep ResNet is either 1) better than linear predictors or 2) the
Hessian at the critical point has a strictly negative eigenvalue.

« Near-identity regions of ResNets enjoy size-indep. upper bounds
on the risk value of critical points & Rademacher complexity.
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