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Introduction
Finite sample memorization is not well understood 
Overparametried NNs with SGD memorize even random noise.


Given a network, can it memorize arbitrary datasets?


Results on function approximation are not very helpful.


Recent results on fully-connected, residual, convolutional networks 
require  hidden nodes to memorize  data points!N N

Can we exploit depth to memorize with less hidden nodes?
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Main results
Tight memorization capacity of ReLU Networks 

For 3-layer networks,  hidden nodes are necessary and 
sufficient for memorizing  arbitrary data points.


ImageNet ( 1M, 1k classes) can be memorized with 4-layer 
ReLU networks with hidden layer size 2k-2k-4k.


-layer network with  params:  memorization capacity = 


If : memorization capacity =  (tight)


If : memorization capacity =  (nearly tight)

Θ( N)
N

N =

L W Ω(W )

L = 2, 3 O(W )

L > 3 O(WL log W )
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Main results
Finite sample expressivity of residual networks 
For ReLU ResNet with input/output dimension / ,  

 hidden nodes are sufficient for memorizing  points


Trajectory of SGD near memorizing global minima 
Without-replacement mini-batch SGD finds a point  
with small risk when initialized close to global minima

dx dy
Ω(N/dx + dy) N



(Long version starts here)
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Memorization phenomenon in NNs
• Overparametrized NNs trained with SGD can memorize 

even random noise. [Zhang et al., 2017]
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Expressive power theory
• To understand memorization phenomenon, it is important 

to understand NN’s expressive power.


• Expressive power is a classic topic in NN theory, e.g., 
universal approximation theorem. [Cybenko, ’89, Hornik, ’91, …]

(http://neuralnetworksanddeeplearning.com/chap4.html)
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Expressive power theory
• To understand memorization phenomenon, it is important 

to understand NN’s expressive power.


• Expressive power is a classic topic in NN theory, e.g., 
universal approximation theorem. [Cybenko, ’89, Hornik, ’91, …]

(http://neuralnetworksanddeeplearning.com/chap4.html)

Majority of results consider function approximation (infinite points), 
Not finite samples!
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Finite sample expressivity 
Def. We define (universal) finite sample expressivity of a 
neural network  as the network’s ability to satisfy the 
following:


For all  and for all , there 
exists a parameter  s.t.  for all .


i.e., the net can memorize arbitrary dataset with  points.

fθ( ⋅ )

{xi}N
i=1 ∈ ℝdx×N {yi}N

i=1 ∈ ℝdy×N

θ fθ(xi) = yi 1 ≤ i ≤ N

N
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Memorization capacity
Def. For , we define memorization capacity to be:


The maximum  such that for all  and for all 
, there exists a parameter  s.t.  for all .


i.e., the maximum value of  for which the network has 
finite sample expressivity.

dy = 1

N {xi}N
i=1 ∈ ℝdx×N

{yi}N
i=1 ∈ ℝN θ fθ(xi) = yi i

N
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Comparison to VC dimension
• Definition of memorization capacity:


The maximum  such that for all  and for all 
, there exists a parameter  s.t.  for all .


• Recall the definition of VC dimension:


The maximum  such that there exists  s.t. for all 
, there exists a parameter  s.t.  for all .

N {xi}N
i=1 ∈ ℝdx×N

{yi}N
i=1 ∈ ℝN θ fθ(xi) = yi i

N {xi}N
i=1 ∈ ℝdx×N

{yi}N
i=1 ∈ {±1}N θ fθ(xi) = yi i

memorization capacity ≤ VC dimension
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Previous works
• Classical works focus on memorization capacity of NNs 

with activations such as linear threshold or sigmoid 
[Cover, 1965; Baum, 1988; Huang & Huang, 1991; Huang & Babri, 1998; 
Huang, 2003; etc…]


• Recent results on modern architectures, for:


• ReLU fully-connected NNs (FNNs) [Zhang et al., 2017]


• Residual networks (ResNets) [Hardt & Ma, 2017]


• Convolutional neural networks (CNNs) [Nguyen & Hein, 2017]
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Previous works
• However, recent results impose strong assumptions on  

the number of hidden nodes!


• A 1-hidden-layer ReLU network with  hidden nodes can 
memorize any arbitrary dataset with  points. 
[Zhang et al., 2017]


• Results on ResNets and CNNs require  hidden nodes. 
[Hardt & Ma, 2017, Nguyen & Hein, 2017]

N
N

N
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Previous works
• However, recent results impose strong assumptions on  

the number of hidden nodes!


• A 1-hidden-layer ReLU network with  hidden nodes can 
memorize any arbitrary dataset with  points. 
[Zhang et al., 2017]


• Results on ResNets and CNNs require  hidden nodes. 
[Hardt & Ma, 2017, Nguyen & Hein, 2017]

N
N

N
Can we use depth to memorize  

with less hidden nodes?
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Agenda
Tight memorization capacity of fully-connected NNs 
Number of hidden nodes necessary and sufficient for memorization 

Memorization capacity of residual networks 
Number of hidden nodes sufficient for memorization 

Trajectory of SGD near memorizing global minima 
Analysis of without-replacement SGD near global minima 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Finite sample expressivity of FNNs
• Training data 


• Assumption: all ’s are distinct and all .


• Fully-connected neural networks





• Activation .  
(includes ReLU and Leaky ReLU)

{(xi, yi)}N
i=1, xi ∈ ℝdx, yi ∈ ℝdy

xi yi ∈ [−1,1]dy

a0(x) = x, al(x) = σ(Wlal−1(x) + bl), l ∈ {1,…, L − 1}, fθ(x) = WLaL−1(x) + bL

σ(t) = max{s+t, s−t}, s+ > s− ≥ 0

Activation

function

Bias

vector

Weight

matrix



Yun, Sra, Jadbabaie. NeurIPS 2019 A Tight Analysis of Memorization Capacity of ReLU Networks

Sufficiency results
Theorem 1.


A 2-hidden-layer ReLU network with hidden layer 
dimensions  can memorize any arbitrary 
dataset with  distinct points.

d1d2 ≥ 4Ndy
N

Proposition 2 (classification).


A 3-hidden-layer ReLU network with hidden layer 
dimensions  and  can memorize any 
arbitrary classification data dataset with  distinct points.

d1d2 ≥ 4N d3 ≥ 4dy
N

 suffices!d1 = d2 = 2 Ndy
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Necessity results
Theorem 3. ( )


A 1-hidden-layer ReLU network with , or  
a 2-hidden-layer ReLU network with   
can not memorize any arbitrary dataset with  points.  
(i.e., there exist datasets that they fail to memorize)

dy = 1

d1 + 2 < N
2d1d2 + d2 + 2 < N

N
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Discussion
• Depth-width tradeoff in finite sample expressivity


• Necessary and sufficient width for memorizing ( ):  
1-hidden-layer  vs 2-hidden-layer 


• For -class classification,  requirement of  

2-hidden-layer improves to  by one more layer


• ImageNet ( ) memorized with a 2k-2k-4k FNN.


• Surprisingly small network size is required to memorize + 
achieve zero training loss at global minimum.

dy = 1
Θ(N) Θ( N)

dy Ω( Ndy)

Ω( N + dy)

N ≈ 106, dy = 103
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Extension to deeper networks
• Extension to deeper networks possible:  

if there are  parameters between hidden layers, 
the network can memorize  points.

Ω(Ndy)
N

Input

Fit

N1

points

l1 l1+1

Fit

N2

points

l2 l2+1

Fit

N3

points

l3 l3+1 Output

dx

dy
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Tight bounds on capacity
• -layer network with  params, 


•  parameters sufficient to memorize  points  
 a lower bound  on memorization capacity


• Theorem 3  For , capacity = 


• Upper bound on VC dim  [Bartlett et al., 2019]  
 For , capacity = 

L W dy = 1

Ω(N) N
⟹ Ω(W)

⟹ L = 2, 3 O(W)

O(WL log W)
⟹ L > 3 O(WL log W)

Tight!

Almost tight!
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Finite sample expressivity of ResNets
• Assumption: data points ’s are in general position, i.e., 

no  data points lie on the same affine hyperplane.


• Assumption:  is a one-hot encoding.


• Residual network (ResNet)











•  is the # hidden nodes in -th residual layer

xi
dx + 1

yi ∈ {0,1}dy

h0(x) = x,

hl(x) = hl−1(x) + Vlσ(Ulhl−1(x) + bl) + cl, l ∈ {1,…, L − 1}

gθ(x) = VLσ(ULhL−1(x) + bL) + cL

dl l
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Sufficiency result for ResNets
Theorem 4.


A ResNet with hidden layer dimensions  and 

 can memorize any arbitrary classification dataset 
with  points.

L−1

∑
l=1

dl ≥
4N
dx

+ 4dy

dL ≥ 2dy
N

• Under a different assumption, improve requirement 
 [Hardt & Ma, 2017] to .


• For CIFAR-10 ( 50k, 3,072, 10):  
50,010 nodes vs 126 nodes

N + dy
4N
dx

+ 6dy

N = dx = dy =



Yun, Sra, Jadbabaie. NeurIPS 2019 A Tight Analysis of Memorization Capacity of ReLU Networks

SGD near memorizers
• We want to solve the empirical risk minimization problem:





• Assumption. The loss  is strictly convex and three 
times differentiable in . For any , there exists a global 
minimizer  of .


• Def. A point  is a memorizing global minimum of 
 if  for all .

minimizeθ ℜ(θ) :=
1
N

N

∑
i=1

ℓ( fθ(xi); yi)

ℓ(z; y)
z y

z ℓ(z; y)

θ*
ℜ(θ) ℓ′�( fθ*(xi); yi) = 0 1 ≤ i ≤ N
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SGD near memorizers
• We analyze without-replacement mini-batch SGD, with 

mini-batch size .


• At every  steps, dataset reshuffled and 
partitioned into 


• SGD update


 

B

E = N/B
S(kE), S(kE+1), …, S(kE+E−1)

θ(t+1) ← θ(t) −
η
B ∑

i∈S(t)

∇θℓ( fθ(t)(xi); yi)
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SGD near memorizers
Theorem 5 (informal).


If the initialization  satisfies  for some 
memorizing global minimum  and small constant , 
initialization satisfies . 
If we run SGD with small enough , it finds a point  that 
satisfies 


    , and
.  

θ(0) ∥θ(0) − θ*∥ ≤ ρ
θ* ρ

ℜ(θ(0)) − ℜ(θ*) = O(∥θ(0) − θ*∥2)
η θ

ℜ(θ) − ℜ(θ*) = O(∥θ(0) − θ*∥4)
∥θ − θ*∥ ≤ 2∥θ(0) − θ*∥
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SGD near memorizers
• Theorem restricted to initialization very close to 

memorizing global minima


• However, holds without any width/depth requirement on 
the network or distributional assumption on data— 
the only requirement:  memorizes the data.


• Completely deterministic, independent of the partition of 
dataset taken by SGD


• The behavior of SGD after finding  is not well understood

θ*

θ
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Thank you for your attention!
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