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Introduction

* Residual networks have been observed to have benign

loss landscapes than fully-connected networks
[Li et al, NeurlPS 2018]

(a) without skip connections (b) with skip connections

[Li et al, NeurlPS 2018]
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Introduction

* Any local minimum of a single-block residual network

x = wl(x + V@(x)) has risk value at least as good as
linear predictors [Shamir, NeurlPS 2018]

Can we extend this result to multi-block ResNets?
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Introduction

 Adding parallel shortcut networks can eliminate bad local
minima [Liang et al., ICML 2018, NeurlPS 2018]

* Adding many skip-connections from hidden nodes to
output removes bad local valleys [Nguyen et al., ICLR 2019]

* However, they only consider direct skip-connection to
output.

Can a chain qf Sﬁg’p-connecﬁons im]orove the loss [cmcfscajoe?
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Introduction

* Near-identity regions of linear ResNets have good

optimization landscape and expressive power
[Hardt & Ma, ICLR 2017]

* Nonlinear function space extension is possible
[Bartlett et al., arXiv 2018]

* |nitialization at near-identity regions leads to stable

training and good generalization performance
[Zhang et al., ICLR 2019]

What are the (yatimizaﬁon/genemfization Jaroyem’es

of near-icfentity regions?
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Multi-block ResNets

 ResNet operation for x € R%

hy(x) =x+ Vlgbzl(x)
h(x) = h_(x) + Vipi(Uh_,(x)), [=2,...,L
fo@) = w'hy(x)

where Ul = le)(dx’ ¢zl : R™ — Rnl, Vl = Rdxxnl, W & Rdx,
0 is the collection of all parameters
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Multi-block ResNets

e Forloss £(z;y) and data distribution &,

RO) = E(, ol (fo(x); »],
Riin = 1nf;cpa, _(x,y)rvg’[f (t' x; vl
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Multi-block ResNets

Theorem. Suppose the loss function £(z; y) is convex and

twice-differentiable in z. Let @* be any twice-differentiable
critical point of R( - ). If

o Eixyyecp €7 (foex); ) ()R (x)"] is full rank, and

o« colspace( [(Uf)T (Uf)T]) + R%
then at least one of the following holds:

ROF) <R, or 1. (VZR(O%)) < 0.
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Multi-block ResNets

 Under geometric conditions, a critical point of multi-block
ResNet is better than linear predictors or is a strict saddle.

e If L =1, any critical point with w* # 0 satisfies
91(0*) < ERHH (recovers [Shamir, NeurlPS 2018])

e Shows that a chain of multiple skip-connections,
as opposed to direct connections to output, can improve
optimization landscapes

e 2nd condition is satisfied whenever Zszz m; < d,
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Near-identity regions
 Consider ResNet with residual blocks:

h(x) = h_(x) + pl(h_(x), [=1,...,L

Theorem. Suppose gbzl is O(1/L)-Lipschitz, and loss

function £(z; y) is a convex, differentiable, and Lipschitz
function of z. Then, for any critical point @* of R( - ),

RO <R, +C

where the constant C doesn’t depend on L.
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Near-identity regions

e Consider ResNet with residual blocks:
hl(X) — hl—l(‘x) + Vl ‘ ReLU(Ulhl_l(.X)), l —_ 1,. . .,L

Theorem. Given a dataset § = (xy, ..., x,), define the
function class %, = {Jg RE SR | wl| < LIVIlUl < 1/\/2}.

Then, the empirical Radamacher complexity satisfies

2
e” max, ||x;|]

Jn

@(‘G}L‘S) S
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Near-identity regions

e When the residual part is O(1/L)-Lipschitz, each residual
block is near-identity.

o Risk value JR(0*) attained is not too far off from R,

e Bounds on R(0%*) and Radamacher complexity are
independent of depth of the network, which is difficult to
achieve In general [Golowich et al., COLT 2018]
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Thank you for Youwr attentlon!
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