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Introduction
• Residual networks have been observed to have benign 

loss landscapes than fully-connected networks  
[Li et al, NeurIPS 2018]

[Li et al, NeurIPS 2018]
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Introduction
• Any local minimum of a single-block residual network  

 has risk value at least as good as 
linear predictors [Shamir, NeurIPS 2018]
x ↦ wT(x + Vϕ(x))

Can we extend this result to multi-block ResNets?
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Introduction
• Adding parallel shortcut networks can eliminate bad local 

minima [Liang et al., ICML 2018, NeurIPS 2018]


• Adding many skip-connections from hidden nodes to 
output removes bad local valleys [Nguyen et al., ICLR 2019]


• However, they only consider direct skip-connection to 
output.

Can a chain of skip-connections improve the loss landscape?
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Introduction
• Near-identity regions of linear ResNets have good 

optimization landscape and expressive power  
[Hardt & Ma, ICLR 2017]


• Nonlinear function space extension is possible  
[Bartlett et al., arXiv 2018]


• Initialization at near-identity regions leads to stable 
training and good generalization performance  
[Zhang et al., ICLR 2019]

What are the optimization/generalization properties  
of near-identity regions?
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Multi-block ResNets
• ResNet operation for 


 
 




where , 
 is the collection of all parameters

x ∈ ℝdx

h1(x) = x + V1ϕ1
z (x)

hl(x) = hl−1(x) + Vlϕl
z(Ulhl−1(x)), l = 2,…, L

fθ(x) = wThL(x)

Ul ∈ ℝml×dx, ϕl
z : ℝml → ℝnl, Vl ∈ ℝdx×nl, w ∈ ℝdx

θ
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Multi-block ResNets
• For loss  and data distribution ,


, 



ℓ(z; y) 𝒫

ℜ(θ) = 𝔼(x,y)∼𝒫[ℓ( fθ(x); y)]
ℜlin = inft∈ℝdx 𝔼(x,y)∼𝒫[ℓ(tT x; y)]
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Multi-block ResNets
Theorem. Suppose the loss function  is convex and 
twice-differentiable in . Let  be any twice-differentiable 
critical point of  . If 


•  is full rank, and


• ,


then at least one of the following holds:


, or .

ℓ(z; y)
z θ*

ℜ( ⋅ )

𝔼(x,y)∼𝒫 [ℓ′ �′�( fθ*(x); y)hL(x)hL(x)T]
colspace([(U*2 )T … (U*L )T]) ≠ ℝdx

ℜ(θ*) ≤ ℜlin λmin(∇2ℜ(θ*)) < 0
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Multi-block ResNets
• Under geometric conditions, a critical point of multi-block 

ResNet is better than linear predictors or is a strict saddle.


• If , any critical point with  satisfies 
 (recovers [Shamir, NeurIPS 2018])


• Shows that a chain of multiple skip-connections,  
as opposed to direct connections to output, can improve 
optimization landscapes


• 2nd condition is satisfied whenever 


L = 1 w* ≠ 0
ℜ(θ*) ≤ ℜlin

∑L
l=2 ml < dx
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Near-identity regions
• Consider ResNet with residual blocks:





Theorem. Suppose  is -Lipschitz, and loss 
function  is a convex, differentiable, and Lipschitz 
function of . Then, for any critical point  of ,


 ,


where the constant  doesn’t depend on .

hl(x) = hl−1(x) + ϕl
z(hl−1(x)), l = 1,…, L

ϕl
z O(1/L)

ℓ(z; y)
z θ* ℜ( ⋅ )

ℜ(θ*) ≤ ℜlin + C

C L
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Near-identity regions
• Consider ResNet with residual blocks:





Theorem. Given a dataset , define the 
function class .


Then, the empirical Radamacher complexity satisfies


 .

hl(x) = hl−1(x) + Vl ⋅ ReLU(Ulhl−1(x)), l = 1,…, L

S = (x1, …, xn)
ℱL = {fθ : ℝdx → ℝ ∣ ∥w∥ ≤ 1,∥Vl∥F,∥Ul∥F ≤ 1/ L}

ℛ(ℱL |S ) ≤
e2 maxi ∥xi∥

n
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Near-identity regions
• When the residual part is -Lipschitz, each residual 

block is near-identity.


• Risk value  attained is not too far off from 


• Bounds on  and Radamacher complexity are 
independent of depth of the network, which is difficult to 
achieve in general [Golowich et al., COLT 2018]

O(1/L)

ℜ(θ*) ℜlin

ℜ(θ*)



Yun, Sra, Jadbabaie. NeurIPS 2019 Are deep ResNets provably better than linear predictors?

Thank you for your attention!
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