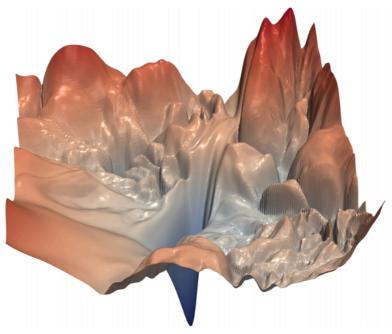
Are deep ResNets provably better than linear predictors?

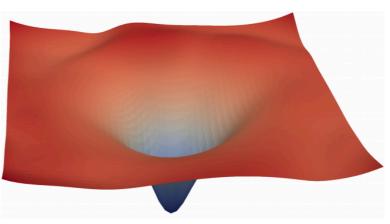
Chulhee Yun, Suvrit Sra, Ali Jadbabaie

Laboratory for Information and Decision Systems, MIT

 Residual networks have been observed to have benign loss landscapes than fully-connected networks [Li et al, NeurIPS 2018]



(a) without skip connections



(b) with skip connections

[Li et al, NeurIPS 2018]

Are deep ResNets provably better than linear predictors?

• Any local minimum of a single-block residual network $x \mapsto w^T(x + V\phi(x))$ has risk value at least as good as linear predictors [Shamir, NeurIPS 2018]

Can we extend this result to <u>multi-block</u> ResNets?

- Adding parallel shortcut networks can eliminate bad local minima [Liang et al., ICML 2018, NeurIPS 2018]
- Adding many skip-connections from hidden nodes to output removes bad local valleys [Nguyen et al., ICLR 2019]
- However, they only consider <u>direct skip-connection</u> to output.

Can a <u>chain of skip-connections</u> improve the loss landscape?

- Near-identity regions of *linear* ResNets have good optimization landscape and expressive power [Hardt & Ma, ICLR 2017]
- Nonlinear function space extension is possible [Bartlett et al., arXiv 2018]
- Initialization at near-identity regions leads to stable training and good generalization performance [Zhang et al., ICLR 2019]

What are the optimization/generalization properties of <u>near-identity regions</u>?

• ResNet operation for $x \in \mathbb{R}^{d_x}$

$$h_{1}(x) = x + V_{1}\phi_{z}^{1}(x)$$

$$h_{l}(x) = h_{l-1}(x) + V_{l}\phi_{z}^{l}(U_{l}h_{l-1}(x)), \quad l = 2,...,L$$

$$f_{\theta}(x) = w^{T}h_{L}(x)$$

where $U_l \in \mathbb{R}^{m_l \times d_x}, \phi_z^l : \mathbb{R}^{m_l} \to \mathbb{R}^{n_l}, V_l \in \mathbb{R}^{d_x \times n_l}, w \in \mathbb{R}^{d_x}, \theta$ is the collection of all parameters

• For loss $\ell(z; y)$ and data distribution \mathscr{P} ,

 $\begin{aligned} \boldsymbol{\Re}(\boldsymbol{\theta}) &= \mathbb{E}_{(x,y)\sim\mathcal{P}}[\ell(f_{\boldsymbol{\theta}}(x);y)],\\ \boldsymbol{\Re}_{\mathrm{lin}} &= \mathrm{inf}_{t\in\mathbb{R}^{d_{x}}}\mathbb{E}_{(x,y)\sim\mathcal{P}}[\ell(t^{T}x;y)] \end{aligned}$

Theorem. Suppose the loss function $\ell(z; y)$ is convex and twice-differentiable in *z*. Let θ^* be any twice-differentiable critical point of $\Re(\cdot)$. If

•
$$\mathbb{E}_{(x,y)\sim \mathscr{P}}\left[\ell''(f_{\theta^*}(x); y)h_L(x)h_L(x)^T\right]$$
 is full rank, and

• colspace(
$$[(\boldsymbol{U}_2^*)^T \dots (\boldsymbol{U}_L^*)^T]) \neq \mathbb{R}^{d_x}$$
,

then at least one of the following holds:

$$\Re(\theta^*) \leq \Re_{\text{lin}}, \text{ or } \lambda_{\min}(\nabla^2 \Re(\theta^*)) < 0.$$

- Under geometric conditions, a critical point of multi-block ResNet is better than linear predictors or is a strict saddle.
- If L = 1, any critical point with $w^* \neq 0$ satisfies $\Re(\theta^*) \leq \Re_{\text{lin}}$ (recovers [Shamir, NeurIPS 2018])
- Shows that a <u>chain of multiple skip-connections</u>, as opposed to <u>direct connections to output</u>, can improve optimization landscapes
- 2nd condition is satisfied whenever $\sum_{l=2}^{L} m_l < d_x$

Near-identity regions

• Consider ResNet with residual blocks:

$$h_l(x) = h_{l-1}(x) + \phi_z^l(h_{l-1}(x)), \quad l = 1, \dots, L$$

Theorem. Suppose ϕ_z^l is O(1/L)-Lipschitz, and loss function $\ell(z; y)$ is a convex, differentiable, and Lipschitz function of *z*. Then, for any critical point θ^* of $\Re(\cdot)$,

$$\Re(\theta^*) \le \Re_{\text{lin}} + C,$$

where the constant C doesn't depend on L.

Near-identity regions

• Consider ResNet with residual blocks:

$$h_l(x) = h_{l-1}(x) + V_l \cdot \text{ReLU}(U_l h_{l-1}(x)), \ l = 1, ..., L$$

Theorem. Given a dataset $S = (x_1, ..., x_n)$, define the function class $\mathscr{F}_L = \left\{ f_{\theta} : \mathbb{R}^{d_x} \to \mathbb{R} \mid ||w|| \le 1, ||V_l||_F, ||U_l||_F \le 1/\sqrt{L} \right\}$.

Then, the empirical Radamacher complexity satisfies

$$\mathcal{R}(\mathcal{F}_L|_S) \le \frac{e^2 \max_i \|x_i\|}{\sqrt{n}}$$

Yun, Sra, Jadbabaie. NeurIPS 2019

Are deep ResNets provably better than linear predictors?

Near-identity regions

- When the residual part is O(1/L)-Lipschitz, each residual block is near-identity.
- Risk value $\Re(\theta^*)$ attained is not too far off from \Re_{lin}
- Bounds on $\Re(\theta^*)$ and Radamacher complexity are **independent of depth** of the network, which is difficult to achieve in general [Golowich et al., COLT 2018]

Thank you for your attention!

Reference:

Are deep ResNets provably better than linear predictors? <u>https://arxiv.org/abs/1907.03922</u>

Yun, Sra, Jadbabaie. NeurIPS 2019

Are deep ResNets provably better than linear predictors?

